metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: C60.57C23, C30.33C24, C15⋊62- (1+4), Dic6.31D10, Dic10.30D6, D30.17C23, D60.19C22, Dic15.39C23, (Q8×D5)⋊7S3, (S3×Q8)⋊5D5, D15⋊Q8⋊6C2, (C4×D5).17D6, Q8.27(S3×D5), (C5×Q8).42D6, D60⋊C2⋊6C2, C12.28D10⋊6C2, Q8⋊3D15⋊4C2, C15⋊Q8.6C22, (C4×S3).17D10, (C3×Q8).25D10, C6.33(C23×D5), D6.D10⋊6C2, C20.57(C22×S3), C10.33(S3×C23), C5⋊2(Q8.15D6), (C6×D5).47C23, D6.29(C22×D5), C12.57(C22×D5), C5⋊D12.3C22, C3⋊D20.4C22, C15⋊D4.5C22, (S3×C20).20C22, (S3×C10).32C23, C3⋊2(Q8.10D10), (D5×C12).20C22, (C4×D15).20C22, D10.43(C22×S3), D30.C2.4C22, (Q8×C15).20C22, Dic5.18(C22×S3), Dic3.18(C22×D5), (C5×Dic3).19C23, (C3×Dic5).16C23, (C5×Dic6).21C22, (C3×Dic10).20C22, (C5×S3×Q8)⋊5C2, (C3×Q8×D5)⋊4C2, C4.57(C2×S3×D5), C2.36(C22×S3×D5), SmallGroup(480,1105)
Series: Derived ►Chief ►Lower central ►Upper central
Subgroups: 1388 in 292 conjugacy classes, 108 normal (24 characteristic)
C1, C2, C2 [×5], C3, C4 [×3], C4 [×7], C22 [×5], C5, S3 [×4], C6, C6, C2×C4 [×15], D4 [×10], Q8, Q8 [×9], D5 [×4], C10, C10, Dic3 [×3], Dic3, C12 [×3], C12 [×3], D6, D6 [×3], C2×C6, C15, C2×Q8 [×5], C4○D4 [×10], Dic5 [×3], Dic5, C20 [×3], C20 [×3], D10, D10 [×3], C2×C10, Dic6 [×3], Dic6 [×3], C4×S3 [×3], C4×S3 [×9], D12 [×6], C3⋊D4 [×4], C2×C12 [×3], C3×Q8, C3×Q8 [×3], C5×S3, C3×D5, D15 [×3], C30, 2- (1+4), Dic10 [×3], Dic10 [×3], C4×D5 [×3], C4×D5 [×9], D20 [×6], C5⋊D4 [×4], C2×C20 [×3], C5×Q8, C5×Q8 [×3], C4○D12 [×6], S3×Q8, S3×Q8 [×3], Q8⋊3S3 [×4], C6×Q8, C5×Dic3 [×3], C3×Dic5 [×3], Dic15, C60 [×3], C6×D5, S3×C10, D30 [×3], C4○D20 [×6], Q8×D5, Q8×D5 [×3], Q8⋊2D5 [×4], Q8×C10, Q8.15D6, D30.C2 [×6], C15⋊D4, C3⋊D20 [×3], C5⋊D12 [×3], C15⋊Q8 [×3], C3×Dic10 [×3], D5×C12 [×3], C5×Dic6 [×3], S3×C20 [×3], C4×D15 [×3], D60 [×3], Q8×C15, Q8.10D10, D60⋊C2 [×3], D15⋊Q8 [×3], D6.D10 [×3], C12.28D10 [×3], C3×Q8×D5, C5×S3×Q8, Q8⋊3D15, C60.57C23
Quotients:
C1, C2 [×15], C22 [×35], S3, C23 [×15], D5, D6 [×7], C24, D10 [×7], C22×S3 [×7], 2- (1+4), C22×D5 [×7], S3×C23, S3×D5, C23×D5, Q8.15D6, C2×S3×D5 [×3], Q8.10D10, C22×S3×D5, C60.57C23
Generators and relations
G = < a,b,c,d | a60=b2=c2=1, d2=a30, bab=a49, cac=a41, dad-1=a31, cbc=a30b, bd=db, cd=dc >
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180)(181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240)
(1 195)(2 184)(3 233)(4 222)(5 211)(6 200)(7 189)(8 238)(9 227)(10 216)(11 205)(12 194)(13 183)(14 232)(15 221)(16 210)(17 199)(18 188)(19 237)(20 226)(21 215)(22 204)(23 193)(24 182)(25 231)(26 220)(27 209)(28 198)(29 187)(30 236)(31 225)(32 214)(33 203)(34 192)(35 181)(36 230)(37 219)(38 208)(39 197)(40 186)(41 235)(42 224)(43 213)(44 202)(45 191)(46 240)(47 229)(48 218)(49 207)(50 196)(51 185)(52 234)(53 223)(54 212)(55 201)(56 190)(57 239)(58 228)(59 217)(60 206)(61 167)(62 156)(63 145)(64 134)(65 123)(66 172)(67 161)(68 150)(69 139)(70 128)(71 177)(72 166)(73 155)(74 144)(75 133)(76 122)(77 171)(78 160)(79 149)(80 138)(81 127)(82 176)(83 165)(84 154)(85 143)(86 132)(87 121)(88 170)(89 159)(90 148)(91 137)(92 126)(93 175)(94 164)(95 153)(96 142)(97 131)(98 180)(99 169)(100 158)(101 147)(102 136)(103 125)(104 174)(105 163)(106 152)(107 141)(108 130)(109 179)(110 168)(111 157)(112 146)(113 135)(114 124)(115 173)(116 162)(117 151)(118 140)(119 129)(120 178)
(1 240)(2 221)(3 202)(4 183)(5 224)(6 205)(7 186)(8 227)(9 208)(10 189)(11 230)(12 211)(13 192)(14 233)(15 214)(16 195)(17 236)(18 217)(19 198)(20 239)(21 220)(22 201)(23 182)(24 223)(25 204)(26 185)(27 226)(28 207)(29 188)(30 229)(31 210)(32 191)(33 232)(34 213)(35 194)(36 235)(37 216)(38 197)(39 238)(40 219)(41 200)(42 181)(43 222)(44 203)(45 184)(46 225)(47 206)(48 187)(49 228)(50 209)(51 190)(52 231)(53 212)(54 193)(55 234)(56 215)(57 196)(58 237)(59 218)(60 199)(61 136)(62 177)(63 158)(64 139)(65 180)(66 161)(67 142)(68 123)(69 164)(70 145)(71 126)(72 167)(73 148)(74 129)(75 170)(76 151)(77 132)(78 173)(79 154)(80 135)(81 176)(82 157)(83 138)(84 179)(85 160)(86 141)(87 122)(88 163)(89 144)(90 125)(91 166)(92 147)(93 128)(94 169)(95 150)(96 131)(97 172)(98 153)(99 134)(100 175)(101 156)(102 137)(103 178)(104 159)(105 140)(106 121)(107 162)(108 143)(109 124)(110 165)(111 146)(112 127)(113 168)(114 149)(115 130)(116 171)(117 152)(118 133)(119 174)(120 155)
(1 144 31 174)(2 175 32 145)(3 146 33 176)(4 177 34 147)(5 148 35 178)(6 179 36 149)(7 150 37 180)(8 121 38 151)(9 152 39 122)(10 123 40 153)(11 154 41 124)(12 125 42 155)(13 156 43 126)(14 127 44 157)(15 158 45 128)(16 129 46 159)(17 160 47 130)(18 131 48 161)(19 162 49 132)(20 133 50 163)(21 164 51 134)(22 135 52 165)(23 166 53 136)(24 137 54 167)(25 168 55 138)(26 139 56 169)(27 170 57 140)(28 141 58 171)(29 172 59 142)(30 143 60 173)(61 182 91 212)(62 213 92 183)(63 184 93 214)(64 215 94 185)(65 186 95 216)(66 217 96 187)(67 188 97 218)(68 219 98 189)(69 190 99 220)(70 221 100 191)(71 192 101 222)(72 223 102 193)(73 194 103 224)(74 225 104 195)(75 196 105 226)(76 227 106 197)(77 198 107 228)(78 229 108 199)(79 200 109 230)(80 231 110 201)(81 202 111 232)(82 233 112 203)(83 204 113 234)(84 235 114 205)(85 206 115 236)(86 237 116 207)(87 208 117 238)(88 239 118 209)(89 210 119 240)(90 181 120 211)
G:=sub<Sym(240)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180)(181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240), (1,195)(2,184)(3,233)(4,222)(5,211)(6,200)(7,189)(8,238)(9,227)(10,216)(11,205)(12,194)(13,183)(14,232)(15,221)(16,210)(17,199)(18,188)(19,237)(20,226)(21,215)(22,204)(23,193)(24,182)(25,231)(26,220)(27,209)(28,198)(29,187)(30,236)(31,225)(32,214)(33,203)(34,192)(35,181)(36,230)(37,219)(38,208)(39,197)(40,186)(41,235)(42,224)(43,213)(44,202)(45,191)(46,240)(47,229)(48,218)(49,207)(50,196)(51,185)(52,234)(53,223)(54,212)(55,201)(56,190)(57,239)(58,228)(59,217)(60,206)(61,167)(62,156)(63,145)(64,134)(65,123)(66,172)(67,161)(68,150)(69,139)(70,128)(71,177)(72,166)(73,155)(74,144)(75,133)(76,122)(77,171)(78,160)(79,149)(80,138)(81,127)(82,176)(83,165)(84,154)(85,143)(86,132)(87,121)(88,170)(89,159)(90,148)(91,137)(92,126)(93,175)(94,164)(95,153)(96,142)(97,131)(98,180)(99,169)(100,158)(101,147)(102,136)(103,125)(104,174)(105,163)(106,152)(107,141)(108,130)(109,179)(110,168)(111,157)(112,146)(113,135)(114,124)(115,173)(116,162)(117,151)(118,140)(119,129)(120,178), (1,240)(2,221)(3,202)(4,183)(5,224)(6,205)(7,186)(8,227)(9,208)(10,189)(11,230)(12,211)(13,192)(14,233)(15,214)(16,195)(17,236)(18,217)(19,198)(20,239)(21,220)(22,201)(23,182)(24,223)(25,204)(26,185)(27,226)(28,207)(29,188)(30,229)(31,210)(32,191)(33,232)(34,213)(35,194)(36,235)(37,216)(38,197)(39,238)(40,219)(41,200)(42,181)(43,222)(44,203)(45,184)(46,225)(47,206)(48,187)(49,228)(50,209)(51,190)(52,231)(53,212)(54,193)(55,234)(56,215)(57,196)(58,237)(59,218)(60,199)(61,136)(62,177)(63,158)(64,139)(65,180)(66,161)(67,142)(68,123)(69,164)(70,145)(71,126)(72,167)(73,148)(74,129)(75,170)(76,151)(77,132)(78,173)(79,154)(80,135)(81,176)(82,157)(83,138)(84,179)(85,160)(86,141)(87,122)(88,163)(89,144)(90,125)(91,166)(92,147)(93,128)(94,169)(95,150)(96,131)(97,172)(98,153)(99,134)(100,175)(101,156)(102,137)(103,178)(104,159)(105,140)(106,121)(107,162)(108,143)(109,124)(110,165)(111,146)(112,127)(113,168)(114,149)(115,130)(116,171)(117,152)(118,133)(119,174)(120,155), (1,144,31,174)(2,175,32,145)(3,146,33,176)(4,177,34,147)(5,148,35,178)(6,179,36,149)(7,150,37,180)(8,121,38,151)(9,152,39,122)(10,123,40,153)(11,154,41,124)(12,125,42,155)(13,156,43,126)(14,127,44,157)(15,158,45,128)(16,129,46,159)(17,160,47,130)(18,131,48,161)(19,162,49,132)(20,133,50,163)(21,164,51,134)(22,135,52,165)(23,166,53,136)(24,137,54,167)(25,168,55,138)(26,139,56,169)(27,170,57,140)(28,141,58,171)(29,172,59,142)(30,143,60,173)(61,182,91,212)(62,213,92,183)(63,184,93,214)(64,215,94,185)(65,186,95,216)(66,217,96,187)(67,188,97,218)(68,219,98,189)(69,190,99,220)(70,221,100,191)(71,192,101,222)(72,223,102,193)(73,194,103,224)(74,225,104,195)(75,196,105,226)(76,227,106,197)(77,198,107,228)(78,229,108,199)(79,200,109,230)(80,231,110,201)(81,202,111,232)(82,233,112,203)(83,204,113,234)(84,235,114,205)(85,206,115,236)(86,237,116,207)(87,208,117,238)(88,239,118,209)(89,210,119,240)(90,181,120,211)>;
G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180)(181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240), (1,195)(2,184)(3,233)(4,222)(5,211)(6,200)(7,189)(8,238)(9,227)(10,216)(11,205)(12,194)(13,183)(14,232)(15,221)(16,210)(17,199)(18,188)(19,237)(20,226)(21,215)(22,204)(23,193)(24,182)(25,231)(26,220)(27,209)(28,198)(29,187)(30,236)(31,225)(32,214)(33,203)(34,192)(35,181)(36,230)(37,219)(38,208)(39,197)(40,186)(41,235)(42,224)(43,213)(44,202)(45,191)(46,240)(47,229)(48,218)(49,207)(50,196)(51,185)(52,234)(53,223)(54,212)(55,201)(56,190)(57,239)(58,228)(59,217)(60,206)(61,167)(62,156)(63,145)(64,134)(65,123)(66,172)(67,161)(68,150)(69,139)(70,128)(71,177)(72,166)(73,155)(74,144)(75,133)(76,122)(77,171)(78,160)(79,149)(80,138)(81,127)(82,176)(83,165)(84,154)(85,143)(86,132)(87,121)(88,170)(89,159)(90,148)(91,137)(92,126)(93,175)(94,164)(95,153)(96,142)(97,131)(98,180)(99,169)(100,158)(101,147)(102,136)(103,125)(104,174)(105,163)(106,152)(107,141)(108,130)(109,179)(110,168)(111,157)(112,146)(113,135)(114,124)(115,173)(116,162)(117,151)(118,140)(119,129)(120,178), (1,240)(2,221)(3,202)(4,183)(5,224)(6,205)(7,186)(8,227)(9,208)(10,189)(11,230)(12,211)(13,192)(14,233)(15,214)(16,195)(17,236)(18,217)(19,198)(20,239)(21,220)(22,201)(23,182)(24,223)(25,204)(26,185)(27,226)(28,207)(29,188)(30,229)(31,210)(32,191)(33,232)(34,213)(35,194)(36,235)(37,216)(38,197)(39,238)(40,219)(41,200)(42,181)(43,222)(44,203)(45,184)(46,225)(47,206)(48,187)(49,228)(50,209)(51,190)(52,231)(53,212)(54,193)(55,234)(56,215)(57,196)(58,237)(59,218)(60,199)(61,136)(62,177)(63,158)(64,139)(65,180)(66,161)(67,142)(68,123)(69,164)(70,145)(71,126)(72,167)(73,148)(74,129)(75,170)(76,151)(77,132)(78,173)(79,154)(80,135)(81,176)(82,157)(83,138)(84,179)(85,160)(86,141)(87,122)(88,163)(89,144)(90,125)(91,166)(92,147)(93,128)(94,169)(95,150)(96,131)(97,172)(98,153)(99,134)(100,175)(101,156)(102,137)(103,178)(104,159)(105,140)(106,121)(107,162)(108,143)(109,124)(110,165)(111,146)(112,127)(113,168)(114,149)(115,130)(116,171)(117,152)(118,133)(119,174)(120,155), (1,144,31,174)(2,175,32,145)(3,146,33,176)(4,177,34,147)(5,148,35,178)(6,179,36,149)(7,150,37,180)(8,121,38,151)(9,152,39,122)(10,123,40,153)(11,154,41,124)(12,125,42,155)(13,156,43,126)(14,127,44,157)(15,158,45,128)(16,129,46,159)(17,160,47,130)(18,131,48,161)(19,162,49,132)(20,133,50,163)(21,164,51,134)(22,135,52,165)(23,166,53,136)(24,137,54,167)(25,168,55,138)(26,139,56,169)(27,170,57,140)(28,141,58,171)(29,172,59,142)(30,143,60,173)(61,182,91,212)(62,213,92,183)(63,184,93,214)(64,215,94,185)(65,186,95,216)(66,217,96,187)(67,188,97,218)(68,219,98,189)(69,190,99,220)(70,221,100,191)(71,192,101,222)(72,223,102,193)(73,194,103,224)(74,225,104,195)(75,196,105,226)(76,227,106,197)(77,198,107,228)(78,229,108,199)(79,200,109,230)(80,231,110,201)(81,202,111,232)(82,233,112,203)(83,204,113,234)(84,235,114,205)(85,206,115,236)(86,237,116,207)(87,208,117,238)(88,239,118,209)(89,210,119,240)(90,181,120,211) );
G=PermutationGroup([(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180),(181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240)], [(1,195),(2,184),(3,233),(4,222),(5,211),(6,200),(7,189),(8,238),(9,227),(10,216),(11,205),(12,194),(13,183),(14,232),(15,221),(16,210),(17,199),(18,188),(19,237),(20,226),(21,215),(22,204),(23,193),(24,182),(25,231),(26,220),(27,209),(28,198),(29,187),(30,236),(31,225),(32,214),(33,203),(34,192),(35,181),(36,230),(37,219),(38,208),(39,197),(40,186),(41,235),(42,224),(43,213),(44,202),(45,191),(46,240),(47,229),(48,218),(49,207),(50,196),(51,185),(52,234),(53,223),(54,212),(55,201),(56,190),(57,239),(58,228),(59,217),(60,206),(61,167),(62,156),(63,145),(64,134),(65,123),(66,172),(67,161),(68,150),(69,139),(70,128),(71,177),(72,166),(73,155),(74,144),(75,133),(76,122),(77,171),(78,160),(79,149),(80,138),(81,127),(82,176),(83,165),(84,154),(85,143),(86,132),(87,121),(88,170),(89,159),(90,148),(91,137),(92,126),(93,175),(94,164),(95,153),(96,142),(97,131),(98,180),(99,169),(100,158),(101,147),(102,136),(103,125),(104,174),(105,163),(106,152),(107,141),(108,130),(109,179),(110,168),(111,157),(112,146),(113,135),(114,124),(115,173),(116,162),(117,151),(118,140),(119,129),(120,178)], [(1,240),(2,221),(3,202),(4,183),(5,224),(6,205),(7,186),(8,227),(9,208),(10,189),(11,230),(12,211),(13,192),(14,233),(15,214),(16,195),(17,236),(18,217),(19,198),(20,239),(21,220),(22,201),(23,182),(24,223),(25,204),(26,185),(27,226),(28,207),(29,188),(30,229),(31,210),(32,191),(33,232),(34,213),(35,194),(36,235),(37,216),(38,197),(39,238),(40,219),(41,200),(42,181),(43,222),(44,203),(45,184),(46,225),(47,206),(48,187),(49,228),(50,209),(51,190),(52,231),(53,212),(54,193),(55,234),(56,215),(57,196),(58,237),(59,218),(60,199),(61,136),(62,177),(63,158),(64,139),(65,180),(66,161),(67,142),(68,123),(69,164),(70,145),(71,126),(72,167),(73,148),(74,129),(75,170),(76,151),(77,132),(78,173),(79,154),(80,135),(81,176),(82,157),(83,138),(84,179),(85,160),(86,141),(87,122),(88,163),(89,144),(90,125),(91,166),(92,147),(93,128),(94,169),(95,150),(96,131),(97,172),(98,153),(99,134),(100,175),(101,156),(102,137),(103,178),(104,159),(105,140),(106,121),(107,162),(108,143),(109,124),(110,165),(111,146),(112,127),(113,168),(114,149),(115,130),(116,171),(117,152),(118,133),(119,174),(120,155)], [(1,144,31,174),(2,175,32,145),(3,146,33,176),(4,177,34,147),(5,148,35,178),(6,179,36,149),(7,150,37,180),(8,121,38,151),(9,152,39,122),(10,123,40,153),(11,154,41,124),(12,125,42,155),(13,156,43,126),(14,127,44,157),(15,158,45,128),(16,129,46,159),(17,160,47,130),(18,131,48,161),(19,162,49,132),(20,133,50,163),(21,164,51,134),(22,135,52,165),(23,166,53,136),(24,137,54,167),(25,168,55,138),(26,139,56,169),(27,170,57,140),(28,141,58,171),(29,172,59,142),(30,143,60,173),(61,182,91,212),(62,213,92,183),(63,184,93,214),(64,215,94,185),(65,186,95,216),(66,217,96,187),(67,188,97,218),(68,219,98,189),(69,190,99,220),(70,221,100,191),(71,192,101,222),(72,223,102,193),(73,194,103,224),(74,225,104,195),(75,196,105,226),(76,227,106,197),(77,198,107,228),(78,229,108,199),(79,200,109,230),(80,231,110,201),(81,202,111,232),(82,233,112,203),(83,204,113,234),(84,235,114,205),(85,206,115,236),(86,237,116,207),(87,208,117,238),(88,239,118,209),(89,210,119,240),(90,181,120,211)])
Matrix representation ►G ⊆ GL8(𝔽61)
1 | 43 | 55 | 35 | 0 | 0 | 0 | 0 |
18 | 43 | 40 | 55 | 0 | 0 | 0 | 0 |
50 | 38 | 36 | 36 | 0 | 0 | 0 | 0 |
38 | 50 | 25 | 59 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 60 | 0 | 59 |
0 | 0 | 0 | 0 | 1 | 0 | 2 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 0 | 0 | 60 | 0 |
45 | 60 | 0 | 39 | 0 | 0 | 0 | 0 |
16 | 16 | 39 | 31 | 0 | 0 | 0 | 0 |
54 | 58 | 27 | 60 | 0 | 0 | 0 | 0 |
58 | 0 | 1 | 34 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 25 | 17 | 50 | 0 |
0 | 0 | 0 | 0 | 44 | 36 | 0 | 11 |
0 | 0 | 0 | 0 | 36 | 0 | 36 | 17 |
0 | 0 | 0 | 0 | 0 | 25 | 44 | 25 |
34 | 60 | 30 | 22 | 0 | 0 | 0 | 0 |
1 | 16 | 30 | 30 | 0 | 0 | 0 | 0 |
23 | 58 | 45 | 1 | 0 | 0 | 0 | 0 |
16 | 23 | 60 | 27 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 44 | 25 | 27 | 0 |
0 | 0 | 0 | 0 | 36 | 17 | 0 | 34 |
0 | 0 | 0 | 0 | 17 | 0 | 17 | 25 |
0 | 0 | 0 | 0 | 0 | 44 | 36 | 44 |
60 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 60 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 60 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 60 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 60 | 0 | 59 | 0 |
0 | 0 | 0 | 0 | 0 | 60 | 0 | 59 |
0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 |
G:=sub<GL(8,GF(61))| [1,18,50,38,0,0,0,0,43,43,38,50,0,0,0,0,55,40,36,25,0,0,0,0,35,55,36,59,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,60,0,0,0,0,0,0,0,0,2,0,60,0,0,0,0,59,0,1,0],[45,16,54,58,0,0,0,0,60,16,58,0,0,0,0,0,0,39,27,1,0,0,0,0,39,31,60,34,0,0,0,0,0,0,0,0,25,44,36,0,0,0,0,0,17,36,0,25,0,0,0,0,50,0,36,44,0,0,0,0,0,11,17,25],[34,1,23,16,0,0,0,0,60,16,58,23,0,0,0,0,30,30,45,60,0,0,0,0,22,30,1,27,0,0,0,0,0,0,0,0,44,36,17,0,0,0,0,0,25,17,0,44,0,0,0,0,27,0,17,36,0,0,0,0,0,34,25,44],[60,0,0,0,0,0,0,0,0,60,0,0,0,0,0,0,0,0,60,0,0,0,0,0,0,0,0,60,0,0,0,0,0,0,0,0,60,0,1,0,0,0,0,0,0,60,0,1,0,0,0,0,59,0,1,0,0,0,0,0,0,59,0,1] >;
57 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 3 | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 4I | 4J | 5A | 5B | 6A | 6B | 6C | 10A | 10B | 10C | 10D | 10E | 10F | 12A | 12B | 12C | 12D | 12E | 12F | 15A | 15B | 20A | ··· | 20F | 20G | ··· | 20L | 30A | 30B | 60A | ··· | 60F |
order | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 3 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 5 | 5 | 6 | 6 | 6 | 10 | 10 | 10 | 10 | 10 | 10 | 12 | 12 | 12 | 12 | 12 | 12 | 15 | 15 | 20 | ··· | 20 | 20 | ··· | 20 | 30 | 30 | 60 | ··· | 60 |
size | 1 | 1 | 6 | 10 | 30 | 30 | 30 | 2 | 2 | 2 | 2 | 6 | 6 | 6 | 10 | 10 | 10 | 30 | 2 | 2 | 2 | 10 | 10 | 2 | 2 | 6 | 6 | 6 | 6 | 4 | 4 | 4 | 20 | 20 | 20 | 4 | 4 | 4 | ··· | 4 | 12 | ··· | 12 | 4 | 4 | 8 | ··· | 8 |
57 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 8 |
type | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | - | + | + | + | ||
image | C1 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | S3 | D5 | D6 | D6 | D6 | D10 | D10 | D10 | 2- (1+4) | S3×D5 | Q8.15D6 | C2×S3×D5 | Q8.10D10 | C60.57C23 |
kernel | C60.57C23 | D60⋊C2 | D15⋊Q8 | D6.D10 | C12.28D10 | C3×Q8×D5 | C5×S3×Q8 | Q8⋊3D15 | Q8×D5 | S3×Q8 | Dic10 | C4×D5 | C5×Q8 | Dic6 | C4×S3 | C3×Q8 | C15 | Q8 | C5 | C4 | C3 | C1 |
# reps | 1 | 3 | 3 | 3 | 3 | 1 | 1 | 1 | 1 | 2 | 3 | 3 | 1 | 6 | 6 | 2 | 1 | 2 | 2 | 6 | 4 | 2 |
In GAP, Magma, Sage, TeX
C_{60}._{57}C_2^3
% in TeX
G:=Group("C60.57C2^3");
// GroupNames label
G:=SmallGroup(480,1105);
// by ID
G=gap.SmallGroup(480,1105);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-3,-5,253,100,185,80,1356,18822]);
// Polycyclic
G:=Group<a,b,c,d|a^60=b^2=c^2=1,d^2=a^30,b*a*b=a^49,c*a*c=a^41,d*a*d^-1=a^31,c*b*c=a^30*b,b*d=d*b,c*d=d*c>;
// generators/relations